Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 81
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Cell Commun Signal ; 17(3): 705-722, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36434320

RESUMO

Memo1 deletion in mice causes premature aging and an unbalanced metabolism partially resembling Fgf23 and Klotho loss-of-function animals. We report a role for Memo's redox function in renal FGF23-Klotho signaling using mice with postnatally induced Memo deficiency in the whole body (cKO). Memo cKO mice showed impaired FGF23-driven renal ERK phosphorylation and transcriptional responses. FGF23 actions involved activation of oxidation-sensitive protein phosphotyrosyl phosphatases in the kidney. Redox proteomics revealed excessive thiols of Rho-GDP dissociation inhibitor 1 (Rho-GDI1) in Memo cKO, and we detected a functional interaction between Memo's redox function and oxidation at Rho-GDI1 Cys79. In isolated cellular systems, Rho-GDI1 did not directly affect FGF23-driven cell signaling, but we detected disturbed Rho-GDI1 dependent small Rho-GTPase protein abundance and activity in the kidney of Memo cKO mice. Collectively, this study reveals previously unknown layers in the regulation of renal FGF23 signaling and connects Memo with the network of small Rho-GTPases.

2.
Dis Model Mech ; 15(3)2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-35044452

RESUMO

RET is a receptor tyrosine kinase with oncogenic potential in the mammary epithelium. Several receptors with oncogenic activity in the breast are known to participate in specific developmental stages. We found that RET is differentially expressed during mouse mammary gland development: RET is present in lactation and its expression dramatically decreases in involution, the period during which the lactating gland returns to a quiescent state after weaning. Based on epidemiological and pre-clinical findings, involution has been described as tumor promoting. Using the Ret/MTB doxycycline-inducible mouse transgenic system, we show that sustained expression of RET in the mammary epithelium during the post-lactation transition to involution is accompanied by alterations in tissue remodeling and an enhancement of cancer potential. Following constitutive Ret expression, we observed a significant increase in neoplastic lesions in the post-involuting versus the virgin mammary gland. Furthermore, we show that abnormal RET overexpression during lactation promotes factors that prime involution, including premature activation of Stat3 signaling and, using RNA sequencing, an acute-phase inflammatory signature. Our results demonstrate that RET overexpression negatively affects the normal post-lactation transition.


Assuntos
Glândulas Mamárias Humanas , Neoplasias , Animais , Feminino , Humanos , Lactação/fisiologia , Glândulas Mamárias Animais/metabolismo , Glândulas Mamárias Animais/patologia , Glândulas Mamárias Humanas/metabolismo , Camundongos , Neoplasias/patologia , Proteínas Proto-Oncogênicas c-ret/genética , Proteínas Proto-Oncogênicas c-ret/metabolismo , Fator de Transcrição STAT3/metabolismo
3.
PLoS One ; 15(7): e0236361, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32706793

RESUMO

MEdiator of cell MOtility1 (MEMO1) is a ubiquitously expressed redox protein involved in extracellular ligand-induced cell signaling. We previously reported that inducible whole-body Memo1 KO (cKO) mice displayed a syndrome of premature aging and disturbed mineral metabolism partially recapitulating the phenotype observed in Klotho or Fgf23-deficient mouse models. Here, we aimed at delineating the contribution of systemic mineral load on the Memo1 cKO mouse phenotype. We attempted to rescue the Memo1 cKO phenotype by depleting phosphate or vitamin D from the diet, but did not observe any effect on survival. However, we noticed that, by contrast to Klotho or Fgf23-deficient mouse models, Memo1 cKO mice did not present any soft-tissue calcifications and displayed even a decreased serum calcification propensity. We identified higher serum magnesium levels as the main cause of protection against calcifications. Expression of genes encoding intestinal and renal magnesium channels and the regulator epidermal growth factor were increased in Memo1 cKO. In order to check whether magnesium reabsorption in the kidney alone was driving the higher magnesemia, we generated a kidney-specific Memo1 KO (kKO) mouse model. Memo1 kKO mice also displayed higher magnesemia and increased renal magnesium channel gene expression. Collectively, these data identify MEMO1 as a novel regulator of magnesium homeostasis and systemic calcification propensity, by regulating expression of the main magnesium channels.


Assuntos
Calcinose/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/deficiência , Rim/metabolismo , Magnésio/sangue , Animais , Calcinose/genética , Feminino , Fator de Crescimento de Fibroblastos 23 , Homeostase , Peptídeos e Proteínas de Sinalização Intracelular/genética , Canais Iônicos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fosfatos/metabolismo , Vitamina D/metabolismo
4.
J Mammary Gland Biol Neoplasia ; 25(1): 13-26, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32080788

RESUMO

Ret receptor tyrosine kinase is a proto-oncogene that participates in development of various cancers. Several independent studies have recently identified Ret as a key player in breast cancer. Although Ret overexpression and function have been under investigation, mainly in estrogen receptor positive breast cancer, a more comprehensive analysis of the impact of recurring Ret alterations in breast cancer is needed. This review consolidates the current knowledge of Ret alterations and their potential effects in breast cancer. We discuss and integrate data on Ret changes in different breast cancer subtypes and potential function in progression, as well as the participation of distinct Ret network signaling partners in these processes. We propose that it will be essential to define a shared molecular feature of tumors with alteration in Ret receptor, be this at the genetic level or via overexpression in order to design effective therapies to target the Ret pathway. Here we review experimental evidence from basic research and pre-clinical studies concentrating on Ret alterations as potential biomarkers for recurrence, and we discuss the possibility that targeting the Ret pathway might in the future become a treatment for breast cancer.


Assuntos
Biomarcadores Tumorais/metabolismo , Neoplasias da Mama/patologia , Regulação Neoplásica da Expressão Gênica , Mutação , Proteínas Proto-Oncogênicas c-ret/metabolismo , Animais , Biomarcadores Tumorais/genética , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Feminino , Humanos , Proto-Oncogene Mas , Proteínas Proto-Oncogênicas c-ret/genética
5.
PLoS One ; 14(10): e0221635, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31600213

RESUMO

Aberrant activation of the JAK/STAT pathway is thought to be the critical event in the pathogenesis of the chronic myeloproliferative neoplasms, polycythemia vera, essential thrombocythemia and primary myelofibrosis. The most frequent genetic alteration in these pathologies is the activating JAK2V617F mutation, and expression of the mutant gene in mouse models was shown to cause a phenotype resembling the human diseases. Given the body of genetic evidence, it has come as a sobering finding that JAK inhibitor therapy only modestly suppresses the JAK2V617F allele burden, despite showing clear benefits in terms of reducing splenomegaly and constitutional symptoms in patients. To gain a better understanding if JAK2V617F is required for maintenance of myeloproliferative disease once it has evolved, we generated a conditional inducible transgenic JAK2V617F mouse model using the SCL-tTA-2S tet-off system. Our model corroborates that expression of JAK2V617F in hematopoietic stem and progenitor cells recapitulates key hallmarks of human myeloproliferative neoplasms, and exhibits gender differences in disease manifestation. The disease was found to be transplantable, and importantly, reversible when transgenic JAK2V617F expression was switched off. Our results indicate that mutant JAK2V617F-specific inhibitors should result in profound disease modification by disabling the myeloproliferative clone bearing mutant JAK2.


Assuntos
Regulação da Expressão Gênica , Células-Tronco Hematopoéticas , Janus Quinase 2 , Transtornos Mieloproliferativos , Transgenes , Substituição de Aminoácidos , Animais , Modelos Animais de Doenças , Células-Tronco Hematopoéticas/metabolismo , Células-Tronco Hematopoéticas/patologia , Humanos , Janus Quinase 2/biossíntese , Janus Quinase 2/genética , Camundongos , Camundongos Transgênicos , Mutação de Sentido Incorreto , Transtornos Mieloproliferativos/genética , Transtornos Mieloproliferativos/metabolismo , Transtornos Mieloproliferativos/patologia
6.
Front Physiol ; 9: 874, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30038585

RESUMO

Ablation of the Mediator of ErbB2-driven Cell Motility 1 (Memo1) in mice altered calcium homeostasis and renal calcium transporter abundance by an unknown mechanism. Here, we investigated the role of intrarenal Memo in renal calcium handling. We have generated a mouse model of inducible kidney-specific Memo1 deletion. The Memo-deficient mice showed normal serum concentration and urinary excretion of calcium and phosphate, but elevated serum FGF23 concentration. They displayed elevated gene expression and protein abundance of the distal renal calcium transporters NCX1, TRPV5, and calbindin D28k. In addition, Claudin 14 gene expression was increased. When the mice were challenged by a vitamin D deficient diet, serum FGF23 concentration and TRPV5 membrane abundance were decreased, but NCX1 abundance remained increased. Collectively, renal distal calcium transport proteins (TRPV5 and Calbindin-D28k) in this model were altered by Memo- and vitamin-D dependent mechanisms, except for NCX1 which was vitamin D-independent. These findings highlight the existence of distinct regulatory mechanisms affecting TRPV5 and NCX1 membrane expression in vivo.

7.
JBMR Plus ; 2(4): 195-205, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30038965

RESUMO

Mediator of ErbB2-driven cell Motility 1 (MEMO1) is an intracellular redox protein that integrates growth factors signaling with the intracellular redox state. We have previously reported that mice lacking Memo1 displayed higher plasma calcium levels and other alterations of mineral metabolism, but the underlying mechanism was unresolved and the bone phenotype was not described. Here, we show that Cre/lox-mediated MEMO1 deletion in the whole body of C57Bl/6 mice (Memo cKO) leads to severely altered trabecular bone and lower mineralization, with preserved osteoblast and osteoclast number and activity, but altered osteoblast response to epidermal growth factor (EGF) and FGF2. More strikingly, Memo cKO mice display decreased alkaline phosphatase (ALP) activity in serum and in bone, while ALPL expression level is unchanged. Bone intracellular redox state is significantly altered in Memo cKO mice and we inferred that ALP dimerization was reduced in Memo cKO mice. Indeed, despite similar ALP oxidation, we found increased ALP sensitivity to detergent in Memo cKO bone leading to lower ALP dimerization capability. Thus, we report a severe bone phenotype and dysfunctional bone ALP with local alteration of the redox state in Memo cKO mice that partially mimics hypophosphatasia, independent of ALPL mutations. These findings reveal Memo as a key player in bone homeostasis and underline a role of bone redox state in controlling ALP activity.

8.
Oncogene ; 37(29): 4046-4054, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29695833

RESUMO

The receptor tyrosine kinase Ret, a key gain-of-function mutated oncoprotein in thyroid carcinomas, has recently been implicated in other cancer types. While Ret copy number gains and mutations have been reported at low frequencies in breast tumors, we and others have reported that Ret is overexpressed in about 40% of human tumors and this correlates with poor patient prognosis. Ret activation regulates numerous intracellular pathways related to proliferation and inflammation, but it is not known whether abnormal Ret expression is sufficient to induce mammary carcinomas. Using a novel doxycycline-inducible transgenic mouse model with the MMTV promoter controlling Ret expression, we show that overexpression of wild-type Ret in the mammary epithelium produces mammary tumors, displaying a morphology that recapitulates characteristics of human luminal breast tumors. Ret-evoked tumors are estrogen receptor positive and negative for progesterone receptor. Moreover, tumors rapidly regress after doxycycline withdrawal, indicating that Ret is the driving oncoprotein. Using next-generation sequencing, we examined the levels of transcripts in these tumors, confirming a luminal signature. Ret-evoked tumors have been passaged in mice and used to test novel therapeutic approaches. Importantly, we have determined that tumors are resistant to endocrine therapy, but respond successfully to treatment with a Ret kinase inhibitor. Our data provide the first compelling evidence for an oncogenic role of non-mutated Ret in the mammary gland and are an incentive for clinical development of Ret as a cancer biomarker and therapeutic target.


Assuntos
Neoplasias da Mama/metabolismo , Neoplasias Mamárias Animais/metabolismo , Proteínas Proto-Oncogênicas c-ret/metabolismo , Animais , Linhagem Celular Tumoral , Feminino , Humanos , Células MCF-7 , Glândulas Mamárias Humanas/metabolismo , Camundongos , Camundongos Transgênicos/metabolismo , Receptores de Progesterona/metabolismo
9.
Oncotarget ; 9(9): 8278-8289, 2018 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-29492194

RESUMO

Tristetraprolin (TTP), an mRNA-binding protein that negatively controls levels of inflammatory factors, is highly expressed in the lactating mouse mammary gland. To determine the biological relevance of this expression profile, we developed bi-transgenic mice in which this protein is specifically down-regulated in the secretory mammary epithelium in the secretory mammary epithelium during lactation. Our data show that TTP conditional KO mice produced underweight litters, possibly due to massive mammary cell death induced during lactation without the requirement of additional stimuli. This effect was linked to overexpression of inflammatory cytokines, activation of STAT3 and down-regulation of AKT phosphorylation. Importantly, blocking TNFα activity in the lactating conditional TTP KO mice inhibited cell death and similar effects were observed when this treatment was applied to wild-type animals during 48 h after weaning. Therefore, our results demonstrate that during lactation TTP wards off early involution by preventing the increase of local inflammatory factors. In addition, our data reveal the relevance of locally secreted TNFα for triggering programmed cell death after weaning.

10.
Neuro Oncol ; 20(5): 621-631, 2018 04 09.
Artigo em Inglês | MEDLINE | ID: mdl-29401256

RESUMO

Background: Glioblastoma (GBM) is one of the most aggressive human brain tumors, with a median survival of 15-18 months. There is a desperate need to find novel therapeutic targets. Various receptor protein kinases have been identified as potential targets; however, response rates in clinical studies have been somewhat disappointing. Targeting the spleen tyrosine kinase (SYK), which acts downstream of a range of oncogenic receptors, may therefore show more promising results. Methods: Kinase expression of brain tumor samples including GBM and low-grade tumors were compared with normal brain and normal human astrocytes by microarray analysis. Furthermore, SYK, LYN, SLP76, and PLCG2 protein expressions were analyzed by immunohistochemistry, western blot, and immunofluorescence of additional GBM patient samples, murine glioma samples, and cell lines. SYK was then blocked chemically and genetically in vitro and in vivo in 2 different mouse models. Multiphoton intravital imaging and multicolor flow cytometry were performed in a syngeneic immunocompetent C57BL/6J mouse GL261 glioma model to study the effect of these inhibitors on the tumor microenvironment. Results: SYK, LYN, SLP76, and PLCG2 were found expressed in human and murine glioma samples and cell lines. SYK inhibition blocked proliferation, migration, and colony formation. Flow cytometric and multiphoton imaging imply that targeting SYK in vivo attenuated GBM tumor growth and invasiveness and reduced B and CD11b+ cell mobility and infiltration. Conclusions: Our data suggest that gliomas express a SYK signaling network important in glioma progression, inhibition of which results in reduced invasion with slower tumor progression.


Assuntos
Biomarcadores Tumorais/metabolismo , Movimento Celular , Proliferação de Células , Modelos Animais de Doenças , Glioblastoma/patologia , Quinase Syk/metabolismo , Microambiente Tumoral , Animais , Apoptose , Biomarcadores Tumorais/genética , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Feminino , Glioblastoma/genética , Glioblastoma/metabolismo , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Nus , Prognóstico , Quinase Syk/genética , Células Tumorais Cultivadas
11.
Elife ; 62017 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-28085666

RESUMO

Transient increases in mitochondrially-derived reactive oxygen species (ROS) activate an adaptive stress response to promote longevity. Nicotinamide adenine dinucleotide phosphate (NADPH) oxidases produce ROS locally in response to various stimuli, and thereby regulate many cellular processes, but their role in aging remains unexplored. Here, we identified the C. elegans orthologue of mammalian mediator of ErbB2-driven cell motility, MEMO-1, as a protein that inhibits BLI-3/NADPH oxidase. MEMO-1 is complexed with RHO-1/RhoA/GTPase and loss of memo-1 results in an enhanced interaction of RHO-1 with BLI-3/NADPH oxidase, thereby stimulating ROS production that signal via p38 MAP kinase to the transcription factor SKN-1/NRF1,2,3 to promote stress resistance and longevity. Either loss of memo-1 or increasing BLI-3/NADPH oxidase activity by overexpression is sufficient to increase lifespan. Together, these findings demonstrate that NADPH oxidase-induced redox signaling initiates a transcriptional response that protects the cell and organism, and can promote both stress resistance and longevity.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/fisiologia , Longevidade , Ferroproteínas não Heme/metabolismo , Estresse Oxidativo , Oxirredutases/antagonistas & inibidores , Transdução de Sinais , Animais , Proteínas de Caenorhabditis elegans/antagonistas & inibidores , Oxirredução
12.
Oncotarget ; 7(50): 82289-82304, 2016 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-27793045

RESUMO

The extracellular serine protease inhibitor serpinE2 is overexpressed in breast cancer and has been shown to foster metastatic spread. Here, we investigated the hypothesis that serpinE2 creates tumor-promoting conditions in the tumor microenvironment (TME) by affecting extracellular matrix remodeling. Using two different breast cancer models, we show that blocking serpinE2, either by knock-down (KD) in tumor cells or in response to a serpinE2 binding antibody, decreases metastatic dissemination from primary tumors to the lungs. We demonstrate that in response to serpinE2 KD or antibody treatment there are dramatic changes in the TME. Multiphoton intravital imaging revealed deposition of a dense extracellular collagen I matrix encapsulating serpinE2 KD or antibody-treated tumors. This is accompanied by a reduction in the population of tumor-promoting macrophages, as well as a decrease in chemokine ligand 2, which is known to affect macrophage abundance and polarization. In addition, TIMP-1 secretion is increased, which may directly inhibit matrix metalloproteases critical for collagen degradation in the tumor. In summary, our findings suggest that serpinE2 is required in the extracellular milieu of tumors where it acts in multiple ways to regulate tumor matrix deposition, thereby controlling tumor cell dissemination.


Assuntos
Neoplasias da Mama/metabolismo , Movimento Celular , Matriz Extracelular/metabolismo , Neoplasias Pulmonares/metabolismo , Macrófagos/metabolismo , Serpina E2/metabolismo , Animais , Antineoplásicos/farmacologia , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Quimiocina CCL2/metabolismo , Colágeno Tipo I/metabolismo , Matriz Extracelular/patologia , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Feminino , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/prevenção & controle , Neoplasias Pulmonares/secundário , Macrófagos/efeitos dos fármacos , Macrófagos/patologia , Camundongos Endogâmicos BALB C , Camundongos SCID , Invasividade Neoplásica , Fenótipo , Interferência de RNA , Serpina E2/antagonistas & inibidores , Serpina E2/genética , Transdução de Sinais , Inibidor Tecidual de Metaloproteinase-1/metabolismo , Transfecção , Microambiente Tumoral , Ensaios Antitumorais Modelo de Xenoenxerto
13.
PLoS Biol ; 14(9): e2000314, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27684370

RESUMO

Cancer research has become a global enterprise, and the number of researchers, as well as the cost for their activities, has skyrocketed. The budget for the National Cancer Institute of the United States National Institutes of Health alone was US$5.2 billion in 2015. Since most of the research is funded by public money, it is perfectly legitimate to ask if these large expenses are worth it. In this brief commentary, we recapitulate some of the breakthroughs that mark the history of breast cancer research over the past decades and emphasize the resulting benefits for afflicted women. In 1971, only 40% of women diagnosed with breast cancer would live another 10 years. Today, nearly 80% of women reach that significant milestone in most developed countries. This dramatic change has afforded breast cancer patients many productive years and a better quality of life. Progress resulted largely from advances in the understanding of the molecular details of the disease and their translation into innovative, rationally designed therapies. These developments are founded on the revolution in molecular and cellular biology, an entirely new array of methods and technologies, the enthusiasm, optimism, and diligence of scientists and clinicians, and the considerable funding efforts from public and private sources. We were lucky to be able to spend our productive years in a period of scientific upheaval in which methods and concepts were revolutionized and that allowed us to contribute, within the global scientific community, to the progress in basic science and clinical practice.

14.
Oncotarget ; 7(35): 56170-56182, 2016 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-27472465

RESUMO

Understanding the complex interaction between growth factor and steroid hormone signaling pathways in breast cancer is key to identifying suitable therapeutic strategies to avoid progression and therapy resistance. The interaction between these two pathways is of paramount importance for the development of endocrine resistance. Nevertheless, the molecular mechanisms behind their crosstalk are still largely obscure. We previously reported that Memo is a small redox-active protein that controls heregulin-mediated migration of breast cancer cells. Here we report that Memo sits at the intersection between heregulin and estrogen signaling, and that Memo controls Estrogen Receptor alpha (ERα) sub-cellular localization, phosphorylation, and function downstream of heregulin and estrogen in breast cancer cells. Memo facilitates ERα and c-Src interaction, ERα Y537 phosphorylation, and has the ability to control ERα extra-nuclear localization. Thus, we identify Memo as an important key mediator between the heregulin and estrogen signaling pathways, which affects both breast cancer cell migration and proliferation.


Assuntos
Neoplasias da Mama/metabolismo , Receptor alfa de Estrogênio/metabolismo , Estrogênios/metabolismo , Ferroproteínas não Heme/metabolismo , Quinases da Família src/metabolismo , Antineoplásicos Hormonais/farmacologia , Antineoplásicos Hormonais/uso terapêutico , Neoplasias da Mama/tratamento farmacológico , Proteína Tirosina Quinase CSK , Movimento Celular , Núcleo Celular/metabolismo , Progressão da Doença , Resistencia a Medicamentos Antineoplásicos , Feminino , Técnicas de Silenciamento de Genes , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Células MCF-7 , Microscopia de Fluorescência , Neuregulina-1/metabolismo , Ferroproteínas não Heme/genética , Fosforilação , Transdução de Sinais
15.
Nat Commun ; 7: 12258, 2016 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-27406745

RESUMO

The JAK/STAT pathway is an attractive target for breast cancer therapy due to its frequent activation, and clinical trials evaluating JAK inhibitors (JAKi) in advanced breast cancer are ongoing. Using patient biopsies and preclinical models of breast cancer, we demonstrate that the JAK/STAT pathway is active in metastasis. Unexpectedly, blocking the pathway with JAKi enhances the metastatic burden in experimental and orthotopic models of breast cancer metastasis. We demonstrate that this prometastatic effect is due to the immunosuppressive activity of JAKi with ensuing impairment of NK-cell-mediated anti-tumour immunity. Furthermore, we show that immunostimulation with IL-15 overcomes the enhancing effect of JAKi on metastasis formation. Our findings highlight the importance of evaluating the effect of targeted therapy on the tumour environment. The impact of JAKi on NK cells and the potential value of immunostimulators to overcome the weakened tumour immunosurveillance, are worthwhile considering in the clinical setting of breast cancer.


Assuntos
Neoplasias Ósseas/secundário , Neoplasias da Mama/imunologia , Neoplasias da Mama/patologia , Vigilância Imunológica , Inibidores de Janus Quinases/farmacologia , Células Matadoras Naturais/imunologia , Modelos Biológicos , Animais , Neoplasias da Mama/tratamento farmacológico , Diferenciação Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Citotoxicidade Imunológica/efeitos dos fármacos , Ativação Enzimática/efeitos dos fármacos , Feminino , Humanos , Vigilância Imunológica/efeitos dos fármacos , Imunomodulação/efeitos dos fármacos , Interleucina-15/farmacologia , Inibidores de Janus Quinases/uso terapêutico , Janus Quinases/metabolismo , Células Matadoras Naturais/efeitos dos fármacos , Ativação Linfocitária/efeitos dos fármacos , Camundongos , Fatores de Transcrição STAT/metabolismo
17.
Dev Biol ; 415(2): 278-295, 2016 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-26746790

RESUMO

The cranial base is a component of the neurocranium and has a central role in the structural integration of the face, brain and vertebral column. Consequently, alteration in the shape of the human cranial base has been intimately linked with primate evolution and defective development is associated with numerous human facial abnormalities. Here we describe a novel recessive mutant mouse strain that presented with a domed head and fully penetrant cleft secondary palate coupled with defects in the formation of the underlying cranial base. Mapping and non-complementation studies revealed a specific mutation in Memo1 - a gene originally associated with cell migration. Expression analysis of Memo1 identified robust expression in the perichondrium and periosteum of the developing cranial base, but only modest expression in the palatal shelves. Fittingly, although the palatal shelves failed to elevate in Memo1 mutants, expression changes were modest within the shelves themselves. In contrast, the cranial base, which forms via endochondral ossification had major reductions in the expression of genes responsible for bone formation, notably matrix metalloproteinases and markers of the osteoblast lineage, mirrored by an increase in markers of cartilage and extracellular matrix development. Concomitant with these changes, mutant cranial bases showed an increased zone of hypertrophic chondrocytes accompanied by a reduction in both vascular invasion and mineralization. Finally, neural crest cell-specific deletion of Memo1 caused a failure of anterior cranial base ossification indicating a cell autonomous role for MEMO1 in the development of these neural crest cell derived structures. However, palate formation was largely normal in these conditional mutants, suggesting a non-autonomous role for MEMO1 in palatal closure. Overall, these findings assign a new function to MEMO1 in driving endochondral ossification in the cranium, and also link abnormal development of the cranial base with more widespread effects on craniofacial shape relevant to human craniofacial dysmorphology.


Assuntos
Fissura Palatina/genética , Peptídeos e Proteínas de Sinalização Intracelular/fisiologia , Desenvolvimento Maxilofacial/fisiologia , Osteogênese/fisiologia , Palato/embriologia , Base do Crânio/embriologia , Animais , Cartilagem/embriologia , Cartilagem/patologia , Fissura Palatina/embriologia , Etilnitrosoureia , Éxons , Regulação da Expressão Gênica no Desenvolvimento , Genes Recessivos , Humanos , Masculino , Mesoderma/citologia , Mesoderma/embriologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Mutantes , Mutagênese , Crista Neural/citologia , Crista Neural/embriologia , Palato/metabolismo , Palato/patologia , Mutação Puntual , Base do Crânio/metabolismo , Base do Crânio/patologia , Especificidade da Espécie
18.
Cancer Discov ; 5(9): 909-11, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26334046

RESUMO

The majority of patients with breast cancer present with an estrogen receptor-positive (ER(+)) tumor, and the endocrine agent tamoxifen is a mainstay for their treatment. Unfortunately, however, resistance remains a major problem because most patients who respond eventually have a recurrence. Thus, an enduring challenge in the breast cancer field is to identify mechanisms underlying tamoxifen resistance. Jin and colleagues describe a novel ER/HOXB7 signaling loop in tamoxifen-resistant breast cancer models. Importantly, they reveal that targeting this signaling loop has great promise as an approach to treat patients with tamoxifen-resistant breast cancer.


Assuntos
Antineoplásicos Hormonais/farmacologia , Resistencia a Medicamentos Antineoplásicos/genética , Receptor alfa de Estrogênio/metabolismo , Regulação Neoplásica da Expressão Gênica , Proteínas de Homeodomínio/metabolismo , Receptor ErbB-2/metabolismo , Animais , Feminino , Humanos
19.
Int J Cancer ; 137(8): 1842-54, 2015 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-25868708

RESUMO

Tenascin-W is a matricellular protein with a dynamically changing expression pattern in development and disease. In adults, tenascin-W is mostly restricted to stem cell niches, and is also expressed in the stroma of solid cancers. Here, we analyzed its expression in the bone microenvironment of breast cancer metastasis. Osteoblasts were isolated from tumor-free or tumor-bearing bones of mice injected with MDA-MB231-1833 breast cancer cells. We found a fourfold upregulation of tenascin-W in the osteoblast population of tumor-bearing mice compared to healthy mice, indicating that tenascin-W is supplied by the bone metastatic niche. Transwell and co-culture studies showed that human bone marrow stromal cells (BMSCs) express tenascin-W protein after exposure to factors secreted by MDA-MB231-1833 breast cancer cells. To study tenascin-W gene regulation, we identified and analyzed the tenascin-W promoter as well as three evolutionary conserved regions in the first intron. 5'RACE analysis of mRNA from human breast cancer, glioblastoma and bone tissue showed a single tenascin-W transcript with a transcription start site at a noncoding first exon followed by exon 2 containing the ATG translation start. Site-directed mutagenesis of a SMAD4-binding element in proximity of the TATA box strongly impaired promoter activity. TGFß1 induced tenascin-W expression in human BMSCs through activation of the TGFß1 receptor ALK5, while glucocorticoids were inhibitory. Our experiments show that tenascin-W acts as a niche component for breast cancer metastasis to bone by supporting cell migration and cell proliferation of the cancer cells.


Assuntos
Neoplasias Ósseas/patologia , Neoplasias Ósseas/secundário , Neoplasias da Mama/patologia , Osteoblastos/metabolismo , Tenascina/genética , Fator de Crescimento Transformador beta/metabolismo , Animais , Células da Medula Óssea/citologia , Neoplasias Ósseas/genética , Neoplasias Ósseas/metabolismo , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Técnicas de Cocultura , Feminino , Humanos , Camundongos , Transplante de Neoplasias , Osteoblastos/patologia , Transdução de Sinais , Células Estromais/citologia , Células Estromais/metabolismo , Tenascina/metabolismo , Microambiente Tumoral , Regulação para Cima
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...